Smart Grids for the City of Praia: Benefits and Challenges

Claudino F. Pereira Mendes (1) , José L. Bernal-Agustín (2) , Álvaro Elgueta-Ruiz (3) , Rodolfo Dufo-López (4)
(1) Faculty of Sciencie & Technology. University of Cape Verde Campus Palmarejo, CP 279 - Praia, Cape Verde. , Cabo Verde
(2) Electrical Engineering Department. University of Zaragoza. C/ María de Luna, 3. 50018 Zaragoza, Spain. , Spain
(3) Faculty of Sciencie & Technology. University of Cape Verde Campus Palmarejo, CP 279 - Praia, Cape Verde. , Cabo Verde
(4) Electrical Engineering Department. University of Zaragoza. C/ María de Luna, 3. 50018 Zaragoza, Spain. , Spain


The current state of the electrical sector in Praia (Cape Verde capital city) is characterized by the high cost of electricity and high levels of technical and commercial losses which is caused by the lack of resources of fossil origin. It is also aggravated by an inadequate investment policy forcing a deep restructuring of the entire sector. In order to take advantage of the existing local natural resources and to have a more efficient, robust, and a fair electric system, it seems inevitable to bet on innovative, intelligent, and secure technology which allows tight integration of renewable energy –mainly wind and photo-voltaic energy. In this regard, the present article discusses the economic, social, and environmental impacts of a smart grid for Praia city. Based on a proposed SG architecture that integrates the existing endogenous resources and technologies, it was possible to identify the main advantages and challenges that the implementation of SG technologies would have for the city.

Full text article

Generated from XML file


1. Abou-Ghazala, A., & El-Shennawy, T. (2012). Applying the smart grid concept in Egypt: Challenges and opportunities. In The Fifteenth International Middle East Power Systems Conference, MEPCON’12.
2. Agência de Regulação Económica (ARE). (1998). Elenco Dos Direitos Dos Consumidores.
3. Ali, T., Mansur, A. A., Shams, Z. B., Ferdous, S., & Hoque, M. A. (2011). An overview of smart grid technology in Bangladesh: Development and opportunities. 2011 International Conference & Utility Exhibition on Power and Energy Systems: Issues and Prospects for Asia (ICUE). doi:10.1109/icuepes.2011.6497752
4. Anderson, J. (2012). Is There a Smart Grid in Africa's Future? Retrieved from
5. Aroge, A., & Meisen, P. (2014). The Smart Grid and Renewable Energy Integration in Nigeria.
6. Bipath, M. (2014). Proposed Smart Grid Vision for South Africa. Africa Smart Grid Forum, Abidjan: South African Smart Grid Initiative.
7. Boletim Oficial. (2012) Zonas de Desenvolvimento de Energias Renováveis (ZDER). Cape Verde: B.O. no7.
8. Borlase, S. (2013). Smart grids infrastructure, technology, and solutions. Boca Raton: Taylor & Francis.
9. Bossart, S. J., & Bean, J. E. (2011). Metrics and benefits analysis and challenges for Smart Grid field projects. IEEE 2011 EnergyTech. doi:10.1109/energytech.2011.5948539
10. Bouhafs, F., Mackay, M., & Merabti, M. (2014). Communication challenges and solutions in the smart grid. New York: Springer.
11. Brown, M. A. (2014). Enhancing efficiency and renewables with smart grid technologies and policies. Futures,58, 21-33. doi:10.1016/j.futures.2014.01.001
12. Câmara de Comércio Indústria e Turismo Portugal Cabo Verde. Geografia e Localização de Cabo Verde. Câmara Comércio Indústria E Tur Port Cabo Verde 2015.
13. Centro de Gestão e Estudos Estratégicos Ciência, Tecnologia e Inovação. (2012). Redes Elétricas Inteligentes: Contexto nacional(pp. 1-176, Rep.). Retrieved from
14. Cisco Systems, International Business Machines Corporation (IBM) SCEC (2011). Smart Grid Reference Architecture[PPT].
15. Costa A. (n.d.) Os desafios da eficiência energética. Expresso Das Ilhas, N 711 2015:22–3.
16. Crabtree, G., Kocs, E., & Aláan, T. (2014). Energy, society and science: The fifty-year scenario. Futures,58, 53-65. doi:10.1016/j.futures.2014.01.003
17. Dada, J. O. (2014). Towards understanding the benefits and challenges of Smart/Micro-Grid for electricity supply system in Nigeria. Renewable and Sustainable Energy Reviews,38, 1003-1014. doi:10.1016/j.rser.2014.07.077
18. Direcção Geral de Energia. (2013) Evolução dos indicadores do Sector Energético em Cabo Verde.
19. Direcção Geral de Energia0 (2015). Plano Nacional de Ação para as Energias Renováveis - Período [2015-2020/2030]
20. El-Hawary, M. E. (2016). The Smart Grid—State-of-the-art and future trends. 2016 Eighteenth International Middle East Power Systems Conference (MEPCON). doi:10.1109/mepcon.2016.7836856
21. Energy technology perspectives 2012: Pathways to a clean energy system. (2012). Paris, France: OECD/IEA.
22. European technology platform SmartGrids: Vision and strategy for Europes electricity networks of the future. (2006). Luxembourg: Office for Official Publications of the European Communities.
23. Ferreira, M. (2010). Perspectivas e Desafios para a Implantação das Smarts Grids: Um estudo de caso dos EUA, Portugal e Brasil Perspectivas e Desafios para a Implantação das Smarts Grids: Um estudo de caso dos EUA, Portugal e Brasil.(Unpublished master's thesis). Universidade Federal Do Rio De Janeiro. Retrieved from
24. Fonseca, J. P. D. B. D. (2010). Integração das fontes de energia renovável em ilhas e regiões remotas. Coordenação Editorial e Revisão.
25. Gungor, V. C., Sahin, D., Kocak, T., Ergut, S., Buccella, C., Cecati, C., & Hancke, G. P. (2013). A Survey on Smart Grid Potential Applications and Communication Requirements. IEEE Transactions on Industrial Informatics,9(1), 28-42. doi:10.1109/tii.2012.2218253
26. Hamilton, B. A., Miller, J., & Renz, B. (2010). Understanding the benefits of smart grid. National Energy Technology Laboratory, 1.
27. International Energy Agency. (2011). Technology Roadmap. SpringerReference. doi:10.1007/springerreference_7300
28. International Energy Agency. (2011). Technology Road Map: Smart Grids. Retrieved February 15, 2017, from
29. International Energy Agency. (2014). Africa Energy Outlook - A Focus on Energy Prospects in Sub Saharan Africa(Rep.). The infrastructure Consortium for Africa. Retrieved from
30. Kuzlu, M. P. (2013). Assessment of communication technologies and network requirements for different smart grid applications. IEEE Innovative Smart Grid Technologies (ISGT) Conference.
31. Kuzlu, M., Pipattanasomporn, M., & Rahman, S. (2014). Communication network requirements for major smart grid applications in HAN, NAN and WAN. Computer Networks,67, 74-88. doi:10.1016/j.comnet.2014.03.029
32. Mohassel, R. R., Fung, A. S., Mohammadi, F., & Raahemifar, K. (2014). A Survey on Advanced Metering Infrastructure and its Application in Smart Grids. In IEEE 27th Canadian Conference. Toronto, Canada.
33. Oliveira, M. (2015). Country Action Plans in the ECOWAS. In ECOWAS Sustainable Energy Policy & Investment High Level Forum. Retrieved from
34. Parallelus. (n.d.). South African Smart Grid Initiative. Retrieved 2015, from
35. Qualcomm. (2012). 3G Cellular Technology for Smart Grid Communications. Retrieved November 4, 2016, from
36. Sessa, C., & Ricci, A. (2014). The world in 2050 and the New Welfare scenario. Futures,58, 77-90. doi:10.1016/j.futures.2013.10.019
37. Smart Grid Australia. (n.d.) SGA Mission Statement. Retrieved 2015 from
38. Smart Grid Communications R&D Roadmap(Rep.). (2015). Office of Electricity Delivery & Energy Reliability. Retrieved from
39. Smart grids and meters - Energy - European Commission. (2018, December 05). Retrieved from
40. SMB Smart Grid Strategic Group. (2017). Smart grid standardization roadmap. Geneva, Switzerland: International Electrotechnical Commission.
41. US Energy Information Administration. (2011). Smart Grid Around the World: Selected Overviews. Washington.
42. Uslar, M., Rohjans, S., Bleiker, R., Gonzalez, J., Specht, M., Suding, T., & Weidelt, T. (2010). Survey of Smart Grid standardization studies and recommendations — Part 2. 2010 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe). doi:10.1109/isgteurope.2010.5638886
43. Vincent, E. N., & Yusuf, S. D. (2014). Integrating renewable energy and smart grid technology into the Nigerian electricity grid system. Smart Grid and Renewable Energy, 5(09), 220.
44. Welsch, M., Bazilian, M., Howells, M., Divan, D., Elzinga, D., Strbac, G Yumkella, K. (2013). Smart and Just Grids: Opportunities for sub-Saharan Africa: Energy Future Lab, 1-32.
45. What is a smart Grid?(Rep.). (2015). United State Department of Energy.
46. Zaglago, L., Craig, C., & Shah, H. (2013, July). Barriers to nationwide adoption of the smart grid technology in Ghana. In Proceedings of the World Congress on Engineering, London, UK (pp. 7-11).
47. Zareen, N., Mustafa, M. W., Al Gizi, A. J., & Alsaedi, M. A. (2012). Worldwide Technological Revolutions and Its Challenges under Smart Grid Paradigm: A Comprehensive Study. International Journal of Scientific & Engineering Research,3(11). Retrieved from g8vo6jdaZeflUjo=&response-content-disposition=inline; filename=Worldwide_Technological_Revolutions_and.pdf.
48. Zpryme Smart Grid Insights. (2012). Smart Grid Appliance Market(Rep.). Retrieved from


Claudino F. Pereira Mendes (Primary Contact)
José L. Bernal-Agustín
Álvaro Elgueta-Ruiz
Rodolfo Dufo-López
Mendes, C. F. P., Bernal-Agustín, J. L., Elgueta-Ruiz, Álvaro, & Dufo-López, R. (2018). Smart Grids for the City of Praia: Benefits and Challenges. Environmental Science & Sustainable Development, 3(2), 36–52.

Article Details