Parametric Approach for Multi-Objective Optimization for Daylighting and Energy Consumption in Early Stage Design of Office Tower in New Administrative Capital City of Egypt
Main Article Content
Abstract
Article Details
- The Author shall grant to the Publisher and its agents the nonexclusive perpetual right and license to publish, archive, and make accessible the Work in whole or in part in all forms of media now or hereafter known under a Creative Commons Attribution 4.0 License or its equivalent, which, for the avoidance of doubt, allows others to copy, distribute, and transmit the Work under the following conditions:
- Attribution: other users must attribute the Work in the manner specified by the author as indicated on the journal Web site;
With the understanding that the above condition can be waived with permission from the Author and that where the Work or any of its elements is in the public domain under applicable law, that status is in no way affected by the license.
- The Author is able to enter into separate, additional contractual arrangements for the nonexclusive distribution of the journal's published version of the Work (e.g., post it to an institutional repository or publish it in a book), as long as there is provided in the document an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post online a pre-publication manuscript (but not the Publisher's final formatted PDF version of the Work) in institutional repositories or on their Websites prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (see The Effect of Open Access). Any such posting made before acceptance and publication of the Work shall be updated upon publication to include a reference to the Publisher-assigned DOI (Digital Object Identifier) and a link to the online abstract for the final published Work in the Journal.
- Upon Publisher's request, the Author agrees to furnish promptly to Publisher, at the Author's own expense, written evidence of the permissions, licenses, and consents for use of third-party material included within the Work, except as determined by Publisher to be covered by the principles of Fair Use.
- The Author represents and warrants that:
- The Work is the Author's original work;
- The Author has not transferred, and will not transfer, exclusive rights in the Work to any third party;
- The Work is not pending review or under consideration by another publisher;
- The Work has not previously been published;
- The Work contains no misrepresentation or infringement of the Work or property of other authors or third parties; and
- The Work contains no libel, invasion of privacy, or other unlawful matter.
- The Author agrees to indemnify and hold Publisher harmless from Author's breach of the representations and warranties contained in Paragraph 7 above, as well as any claim or proceeding relating to Publisher's use and publication of any content contained in the Work, including third-party content.
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Baumgartner, U., Baumgartner, U., Magele, C., Magele, C., Renhart, W., & Renhart, W. (2004). Pareto
Optimality and Particle Swarm Optimization. IEEE TRANSACTIONS ON MAGNETICS, 40(2), 1172–1175. https://doi.org/10.1109/TMAG.2004.825430
El Daly, H. M. T. (2014). Automated fenestration allocation as complying with LEED rating system. Alexandria Engineering Journal, 53(4), 883–890. https://doi.org/10.1016/j.aej.2014.09.011
Elghazi, Y., Wagdy, A., Mohamed, S., & Hassan, A. (2014). DAYLIGHTING DRIVEN DESIGN : OPTIMIZING KALEIDOCYCLE FACADE FOR HOT ARID CLIMATE. In Fifth German-Austrian IBPSA Conference RWTH Aachen University (pp. 314–321). Aachen.
Konis, K., Gamas, A., & Kensek, K. (2016). Passive performance and building form: An optimization
framework for early-stage design support. Solar Energy, 125, 161–179. https://doi.org/10.1016/j.solener.2015.12.020
Lin, S. H. E., & Gerber, D. J. (2014). Designing-in performance: A framework for evolutionary energy
performance feedback in early stage design. Automation in Construction, 38, 59–73. https://doi.org/10.1016/j.autcon.2013.10.007
Musleh, M. A. M. (2012). Parametric Design Optimization in Sustainable Urban Design : In Hot Climate.
Nguyen, A.-T., Reiter, S., & Rigo, P. (2014). A review of simulation-based optimization methods applied to building performance analysis. Applied Energy, 113, 1043–1058. https://doi.org/10.1016/j.apenergy.2013.08.061
Østergard, T., Jensen, R. L., & Maagaard, S. E. (2016). Building simulations supporting decision making in early design - A review. Renewable and Sustainable Energy Reviews, 61, 187–201. https://doi.org/10.1016/j.rser.2016.03.045
Qingsong, M., & Fukuda, H. (2016). Parametric Office Building for Daylight and Energy Analysis in the
Early Design Stages. Procedia - Social and Behavioral Sciences, 216, 818–828. https://doi.org/10.1016/j.sbspro.2015.12.079
Roudsari, M. S., Pak, M., Smith, A., & Gordon Gill Architecture. (2013). Ladybug: a Parametric Environmental Plugin for Grasshopper To Help Designers Create an Environmentally-Conscious Design. 13th Conference of International Building Performance Simulation Association, 3129–3135. Retrieved from http://www.ibpsa.org/proceedings/bs2013/p 2499.pdf
SIS. (2017). New Administrative Capital. Retrieved August 20, 2017, from http://www.sis.gov.eg/section/352/5238?lang=en-us
Suyoto, W., Indraprastha, A., & Purbo, H. W. (2015). Parametric Approach as a Tool for Decision-making
in Planning and Design Process. Case study: Office Tower in Kebayoran Lama. Procedia - Social and
Behavioral Sciences, 184(August 2014), 328–337. https://doi.org/10.1016/j.sbspro.2015.05.098
Turrin, M., Von Buelow, P., Kilian, A., & Stouffs, R. (2012). Performative skins for passive climatic comfort: A parametric design process. Automation in Construction, 22(May), 36–50. https://doi.org/10.1016/j.autcon.2011.08.001
USGBC, L. (2013). US Green Building Council. Retrieved August 28, 2017, from https://www.usgbc.org/leed
Vierlinger, R., Zimmel, C., & Schneider, G. (2013). Octopus, Version 0.1. Retrieved May 1, 2013, from www.grasshopper3d.com/group/octopu
Wagdy, A., & Fathy, F. (2015). A parametric approach for achieving optimum daylighting performance
through solar screens in desert climates. Journal of Building Engineering, 3, 155–170. https://doi.org/10.1016/j.jobe.2015.07.007