An Approach to Adaptive Sustainable Facades Inspired by Plants
Abstract
Nowadays, and under the global warming circumstances we are facing, particularly those resulting from the building sectors, many directions for more sustainable and eco-friendly concepts have emerged. From these sustainability approaches is the “Biomimicry” approach. This approach represents the science of imitating and benefiting from nature’s principles. Nature has provided various strategies to adapt to the surrounding conditions. There are several methodologies and tools developed following the biomimicry approach and taking nature as inspiration. However, difficulties arise in collaborating more than one discipline, which consumes a lot of time and effort, consequently cost. Furthermore, the existing methodologies are still too generic for architects. Therefore, this paper aims at developing a platform that integrates different methodologies, approaches, and tools comprehensively.
In this paper, the focus would be on plant adaptations. A more focus would be on the building’s envelope specifically due to its valuable contribution to the building’s overall energy consumption. The paper seeks to integrate the plant’s adaptive strategies to the building envelope. The motivation is to tackle solutions for the building envelope environmental problems mainly for heat, water air, and light challenges.
Full text article
References
Badarnah, L. (2017). Form follows environment: biomimetic approaches to building envelope design for environmental adaptation. Buildings, 7(2), 40.
Badarnah, L. (2020). Towards the LIVING envelope: biomimetics for building envelope adaptation [Doctoral dissertation]. Delft University of Technology, Delft, the Netherlands.
Baumeister, D. (2007). Biomimicry [Presentation]. University of Washington College of Architecture. Seattle, USA. 8 May
Deldin, J. & Schuknecht, M. (2015). The AskNature Database, Biologically Inspired Design: Computational Methods and Tools. In A.K. Goel, D. A. McAdams & R. B. Stone (eds.), Biologically Inspired Design (pp. 17-27).
Ezcurra, E., Mellink, E., Wehncke, E., González, C., Morrison, S., Warren, A., ... & Driessen, P. (2006). Natural history and evolution of the world's deserts. In Global deserts outlook (pp. 1-26). UNEP.
Guo, Q., Dai, E., Han, X., Xie, S., Chao, E., & Chen, Z. (2015). Fast nastic motion of plants and bioinspired structures. Journal of the Royal Society Interface, 12(110), 20150598.
Janine, B. (2002). Biomimicry: Innovation inspired by nature. Publish Harper Collins, New York.
Knippers, J. (2009). Building & construction as a potential field for the application of modern biomimetic principles. In International Biona Symposium.
Krieg, O. (2004). HygroSkin – Meteorosensitive Pavilion. Institute for Computational Design, University of Stuttgart, Germany.
Mauseth, J. D. (2003). Botany: an introduction to plant biology [2nd Edition]. Jones & Bartlett Publishers.
Mazzoleni, I. (2013). Architecture follows nature-biomimetic principles for innovative design (Vol. 2). Crc Press.
Nagel, J. K., Nagel, R. L., Stone, R. B., & McAdams, D. A. (2010). Function-based, biologically inspired concept generation. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AI EDAM, 24(4), 521-535.
Pohl, J. (2011). Building Science: Concepts and Application. Chichester, Wiley-Blackwell, 52.
Sartori, J., Pal, U., & Chakrabarti, A. (2010). A methodology for supporting “transfer” in biomimetic design. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AI EDAM, 24(4), 483-506.
Schleicher, S. (2015). Bio-inspired compliant mechanisms for architectural design: transferring bending and folding principles of plant leaves to flexible kinetic structures. University of Stuttgart, Germany.
Schleicher, S., Lienhard, J., Knippers, J., Poppinga, S., Masselter, T., & Speck, T. (2011). Bio-inspired kinematics of adaptive shading systems for free form facades. In Proceedings of the IABSE-IASS Symposium, Taller Longer Lighter, London, UK (Vol. 9).
Tero, A., Takagi, S., Saigusa, T., Ito, K., Bebber, D. P., Fricker, M. D., ... & Nakagaki, T. (2010). Rules for biologically inspired adaptive network design. Science, 327(5964), 439-442.
Valk, A. V. D. (2006). The biology of freshwater wetlands. Oxford: Oxford University Press. p.173
Vincent, J. F., Bogatyreva, O., Pahl, A. K., Bogatyrev, N., & Bowyer, A. (2005). Putting biology into TRIZ: a database of biological effects. Creativity and Innovation Management, 14(1), 66-72.
Vincent, J. F., Bogatyreva, O. A., Bogatyrev, N. R., Bowyer, A., & Pahl, A. K. (2006). Biomimetics: its practice and theory. Journal of the Royal Society Interface, 3(9), 471-482.
Zari, M. P. (2007, November). Biomimetic approaches to architectural design for increased sustainability. In The SB07 NZ Sustainable Building Conference (pp. 1-10).
Zari, M. P., & Storey, J. B. (2007). An ecosystem based biomimetic theory for a regenerative built environment. In Sustainable Building Conference (Vol. 7). Lisbon, Portugal.
Authors
Copyright (c) 2020 The Academic Research Community publication

This work is licensed under a Creative Commons Attribution 4.0 International License.
- The Author shall grant to the Publisher and its agents the nonexclusive perpetual right and license to publish, archive, and make accessible the Work in whole or in part in all forms of media now or hereafter known under a Creative Commons Attribution 4.0 License or its equivalent, which, for the avoidance of doubt, allows others to copy, distribute, and transmit the Work under the following conditions:
- Attribution: other users must attribute the Work in the manner specified by the author as indicated on the journal Web site;
With the understanding that the above condition can be waived with permission from the Author and that where the Work or any of its elements is in the public domain under applicable law, that status is in no way affected by the license.
- The Author is able to enter into separate, additional contractual arrangements for the nonexclusive distribution of the journal's published version of the Work (e.g., post it to an institutional repository or publish it in a book), as long as there is provided in the document an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post online a pre-publication manuscript (but not the Publisher's final formatted PDF version of the Work) in institutional repositories or on their Websites prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (see The Effect of Open Access). Any such posting made before acceptance and publication of the Work shall be updated upon publication to include a reference to the Publisher-assigned DOI (Digital Object Identifier) and a link to the online abstract for the final published Work in the Journal.
- Upon Publisher's request, the Author agrees to furnish promptly to Publisher, at the Author's own expense, written evidence of the permissions, licenses, and consents for use of third-party material included within the Work, except as determined by Publisher to be covered by the principles of Fair Use.
- The Author represents and warrants that:
- The Work is the Author's original work;
- The Author has not transferred, and will not transfer, exclusive rights in the Work to any third party;
- The Work is not pending review or under consideration by another publisher;
- The Work has not previously been published;
- The Work contains no misrepresentation or infringement of the Work or property of other authors or third parties; and
- The Work contains no libel, invasion of privacy, or other unlawful matter.
- The Author agrees to indemnify and hold Publisher harmless from Author's breach of the representations and warranties contained in Paragraph 7 above, as well as any claim or proceeding relating to Publisher's use and publication of any content contained in the Work, including third-party content.
This work is licensed under a Creative Commons Attribution 4.0 International License.